Catalyzing the conversion of biomass to biofuel by Staff Writers Munich, Germany (SPX) Jul 27, 2021
Zeolites are extremely porous materials: Ten grams can have an internal surface area the size of a soccer field. Their cavities make them useful in catalyzing chemical reactions and thus saving energy. An international research team has now made new findings regarding the role of water molecules in these processes. One important application is the conversion of biomass into biofuel. Fuel made from biomass is considered to be climate-neutral, although energy is still needed to produce it: The desired chemical reactions require high levels of temperature and pressure. "If we are to do without fossil energy sources in the future and make efficient large-scale use of biomass, we will also have to find ways to reduce the energy required for processing the biomass," says Johannes Lercher, professor for Chemical Technology at the Technical University of Munich (TUM) and Director of the Institute for Integrated Catalysis at the Pacific Northwest National Laboratory in Richland, Washington (USA). Working together with an international research team, Lercher has taken a closer look at the role of water molecules in reactions inside the zeolite's pores, which are less than one nanometer in size.
It all starts with acids When the organic molecule is "forced" to accept a proton, it tries to stabilize itself. Thus, an alcohol can give rise to a molecule with a double bond - a typical reaction step on the path from biomass to biofuel. The zeolite walls stabilize transitional states occurring during conversion and, thus, help to minimize the amount of energy required by the reaction to occur.
Zeolites acting as acids However, while hydronium ions disperse in water, they remain closely associated with the zeolite. Chemical pre-treatment can vary the number of these active centers and, thus, establish a certain density of hydronium ions in the pores of the zeolite.
The ideal zeolite for every reaction "In general, it's possible to increase the reaction rate by making the pores smaller and raising the charge density," Johannes Lercher explains. "However, this increase has its limits: When things get too crowded and the charges are too close to one another, the reaction rate drops again. This makes it possible to find the optimum conditions for every reaction." "Zeolites are generally suitable as nanoreactors for all chemical reactions whose reaction partners fit into the pores and in which an acid is used as a catalyst," emphasizes Lercher. "We are at the very beginning of a development with the potential to increase the reactivity of molecules even at low temperatures and, thus, to save considerable amounts of energy in the production of fuels or chemicals."
Research Report: "Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores"
Airbus joins SAF+ Consortium to for sustainable aviation fuels Toulouse, France (SPX) Jul 19, 2021 Airbus and the Montreal, Canada-based SAF+ Consortium have signed a Memorandum of Understanding (MoU) to collaborate with major Canadian aviation industry players on sustainable aviation fuel (SAF) development and production in North America. Airbus will be investing through "in-kind" contributions, which consist of technical and certification expertise, economic analysis, communications and advocacy. Today's announcement marks the launch of a new Canadian ecosystem dedicated to stimulating the pr ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |