Energy News
BIO FUEL
Clean, sustainable fuels made 'from thin air' and plastic waste
Carbon capture from air and its photoelectrochemical conversion into fuel with simultaneous waste plastic conversion into chemicals.
Clean, sustainable fuels made 'from thin air' and plastic waste
by Staff Writers
Cambridge UK (SPX) Jun 20, 2023

Researchers have demonstrated how carbon dioxide can be captured from industrial processes - or even directly from the air - and transformed into clean, sustainable fuels using just the energy from the Sun.

The researchers, from the University of Cambridge, developed a solar-powered reactor that converts captured CO2 and plastic waste into sustainable fuels and other valuable chemical products. In tests, CO2 was converted into syngas, a key building block for sustainable liquid fuels, and plastic bottles were converted into glycolic acid, which is widely used in the cosmetics industry.

Unlike earlier tests of their solar fuels technology however, the team took CO2 from real-world sources - such as industrial exhaust or the air itself. The researchers were able to capture and concentrate the CO2 and convert it into sustainable fuel.

Although improvements are needed before this technology can be used at an industrial scale, the results, reported in the journal Joule, represent another important step toward the production of clean fuels to power the economy, without the need for environmentally destructive oil and gas extraction.

For several years, Professor Erwin Reisner's research group, based in the Yusuf Hamied Department of Chemistry, has been developing sustainable, net-zero carbon fuels inspired by photosynthesis - the process by which plants convert sunlight into food - using artificial leaves. These artificial leaves convert CO2 and water into fuels using just the power of the sun.

To date, their solar-driven experiments have used pure, concentrated CO2 from a cylinder, but for the technology to be of practical use, it needs to be able to actively capture CO2 from industrial processes, or directly from the air. However, since CO2 is just one of many types of molecules in the air we breathe, making this technology selective enough to convert highly diluted CO2 is a huge technical challenge.

"We're not just interested in decarbonisation, but de-fossilisation - we need to completely eliminate fossil fuels in order to create a truly circular economy," said Reisner. "In the medium term, this technology could help reduce carbon emissions by capturing them from industry and turning them into something useful, but ultimately, we need to cut fossil fuels out of the equation entirely and capture CO2 from the air."

The researchers took their inspiration from carbon capture and storage (CCS), where CO2 is captured and then pumped and stored underground.

"CCS is a technology that's popular with the fossil fuel industry as a way to reduce carbon emissions while continuing oil and gas exploration," said Reisner. "But if instead of carbon capture and storage, we had carbon capture and utilisation, we could make something useful from CO2 instead of burying it underground, with unknown long-term consequences, and eliminate the use of fossil fuels."

The researchers adapted their solar-driven technology so that it works with flue gas or directly from the air, converting CO2 and plastics into fuel and chemicals using only the power of the sun.

By bubbling air through the system containing an alkaline solution, the CO2 selectively gets trapped, and the other gases present in air, such as nitrogen and oxygen, harmlessly bubble out. This bubbling process allows the researchers to concentrate the CO2 from air in solution, making it easier to work with.

The integrated system contains a photocathode and an anode. The system has two compartments: on one side is captured CO2 solution that gets converted into syngas, a simple fuel. On the other plastics are converted into useful chemicals using only sunlight.

"The plastic component is an important trick to this system," said co-first author Dr Motiar Rahaman. "Capturing and using CO2 from the air makes the chemistry more difficult. But, if we add plastic waste to the system, the plastic donates electrons to the CO2. The plastic breaks down to glycolic acid, which is widely used in the cosmetics industry, and the CO2 is converted into syngas, which is a simple fuel."

"This solar-powered system takes two harmful waste products - plastic and carbon emissions - and converts them into something truly useful," said co-first author Dr Sayan Kar.

"Instead of storing CO2 underground, like in CCS, we can capture it from the air and make clean fuel from it," said Rahaman. "This way, we can cut out the fossil fuel industry from the process of fuel production, which can hopefully help us avoid climate destruction."

"The fact that we can effectively take CO2 from air and make something useful from it is special," said Kar. "It's satisfying to see that we can actually do it using only sunlight."

The scientists are currently working on a bench-top demonstrator device with improved efficiency and practicality to highlight the benefits of coupling direct air capture with CO2 utilisation as a path to a zero-carbon future.

The research was supported in part by the Weizmann Institute of Science, the European Commission Marie Sklodowska-Curie Fellowship, the Winton Programme for the Physics of Sustainability, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI). Erwin Reisner is a Fellow and Motiar Rahaman is a Research Associate of St John's College, Cambridge. Erwin Reisner leads the Cambridge Circular Plastics Centre (CirPlas), which aims to eliminate plastic waste by combining blue-sky thinking with practical measures.

Research Report:Integrated Capture and Solar-driven Utilization of CO2 from Flue Gas and Air

Related Links
Cambridge Circular Plastics Centre (CirPlas)
Bio Fuel Technology and Application News

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
BIO FUEL
Carbon mitigation payments can make bioenergy crops more appealing for farmers
Urbana IL (SPX) Jun 18, 2023
Bioenergy crops such as miscanthus and switchgrass provide several environmental benefits, but low returns and profit risks are barriers for investment by farmers. A new study from the University of Illinois Urbana-Champaign shows that carbon mitigation payments could increase net returns and reduce income risk, potentially enticing more farmers to grow these crops. "We were interested in looking at the returns to farmers and the risks to farm income of adopting bioenergy crops compared to convent ... read more

BIO FUEL
Drawn by green subsidies, solar cell giant expands US production

Boric acid-anchoring hole-selective contact for perovskite solar cells

Solar cells can, finally, stand the heat

Government agencies launch effort to expand use of clean-energy tax credits

BIO FUEL
Shell maintains oil output levels, sparking outcry

USTC enhances hydrogen production via new catalyst strategy

Shell focused on energy transition, but spending big on fossil fuels

Peak in oil demand 'in sight' before end of decade: IEA

BIO FUEL
Landmark US youth climate trial begins in Montana

Most nations get low marks on 'net-zero' climate plans

World warming at record 0.2C per decade, scientists warn

UN climate chief hails 'unique insights' of embattled COP28 head

BIO FUEL
Lithium boom comes to Brazil's 'misery valley'

Railways could be a key 'utility player' for backup power

A novel, completely solid, rechargeable air battery

Turning up the heat

BIO FUEL
Carbon mitigation payments can make bioenergy crops more appealing for farmers

EU probes alleged fraudulent biofuel from China

E-fuels - DLR selects Leuna as location for its PtL technology platform

WVU researcher searching for 'holy grail' of sustainable bioenergy

BIO FUEL
European leaders host Musk, chase Tesla investment

GM reaches deal for access to Tesla's North American chargers

Musk, China industry minister hold talks on 'new energy vehicles': ministry

Tesla's Musk hails China's 'vitality' on Beijing visit

BIO FUEL
Canadian Prairies farmers try to adapt to a warming world

Using photosynthesis for living on Mars while making space travel sustainable

Seaweed farming may help tackle global food insecurity

Indonesia, Malaysia to fight against EU palm oil 'discrimination'

BIO FUEL
Defense Department announces effort to increase Idaho cobalt extraction

US judge pauses Microsoft's Activision buy

Italy sets curbs on Pirelli's Chinese investor Sinochem

AFRL demonstrates new augmented reality capability to improve DAF Nondestructive Inspections

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.