Getting hydrogen out of banana peels by Staff Writers Lausanne, Switzerland (SPX) Jan 26, 2022
As the world's energy demands increase, so does our consumption of fossil fuels. The result is a massive rise in greenhouse gases emissions with severely adverse environmental effects. To address this, scientists have been searching for alternative, renewable sources of energy. A main candidate is hydrogen produced from organic waste, or "biomass", of plants and animals. Biomass also absorbs, removes, and stores CO2 from the atmosphere, while biomass decomposition can also bring us ways to negative emissions or greenhouse gases removal. But even though biomass heralds a way forward, there is still the question of the best way to maximize its conversion into energy.
Biomass gasification Syngas is a mix of hydrogen, methane, carbon monoxide and other hydrocarbons, and those are what are used as "biofuel" to generate power. On the other hand, biochar is often regarded as a solid carbon waste, although it can be used in agriculture applications.
Biomass pyrolysis Flash pyrolysis takes place at 600 C and produces the most syngas and has the lowest residence time. Unfortunately, it also needs specialized reactors that can handle high temperatures and pressures.
Banana split for hydrogen production The method performs flash light pyrolysis using a Xenon lamp, commonly used for curing metallic inks for printed electronics. Girault's group has also used the system in the last few years for other purposes, like synthesizing nanoparticles. The lamp's white flash light provides a high-power energy source as well as short pulses that promote photo-thermal chemical reactions. The idea is to generate a powerful flash light shot, which the biomass absorbs and which instantaneously triggers a photothermal biomass conversion into syngas and biochar. This flashing technique was used on different sources of biomass: banana peels, corn cobs, orange peels, coffee beans and coconut shells, all of which were initially dried at 105 C for 24 hours and then ground and sieved to a thin powder. The powder was then placed in a stainless-steel reactor with a standard glass window at ambient pressure and under an inert atmosphere. The Xenon lamp flashes, and the whole conversion process is over in few milliseconds. "Each kg of dried biomass can generate around 100 liters of hydrogen and 330g of biochar, which is up to 33wt.% of the original dried banana peel mass," says Bhawna Nagar, who worked on the study. The method also had a positive calculated energy outcome of 4.09 MJ-per kg of dried biomass. What stands out in this method is that both its end products, hydrogen and solid-carbon biochar, are valuable. The hydrogen can be used as green fuel, while the carbon biochar, can either be buried and used as a fertilizer or it can be used to manufacture conductive electrodes. "The relevance of our work is further heightened by the fact that we are indirectly capturing CO2 stores from the atmosphere for years," says Nagar. "We have converted that into useful end products in no time using a Xenon flash lamp."
Research Report: "Banana split: Biomass splitting with flash light irradiation"
Creating sustainable material from waste Newark DE (SPX) Jan 21, 2022 It's no secret that we need more sustainable materials if we hope to help the planet. Bio-derived materials are one potential option, but they must be economical if anyone is going to use them. For instance, a better bio-based milk jug would be great. However, if the milk sells for $20 per gallon because the cost of the jug increases from $1 to $17, no one will buy it. Led by Professor Thomas H. Epps, III, a team of University of Delaware researchers and collaborators from CanmetENERGY are k ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |