Energy News  
BIO FUEL
Greener days ahead for carbon fuels
by Staff Writers
Berkeley CA (SPX) Dec 19, 2018

Researchers at Berkeley Lab and the Joint Center for Artificial Photosynthesis have demonstrated that recycling carbon dioxide into valuable chemicals such as ethylene and propanol, and fuels such as ethanol, can be economical and efficient -- all through product-specific 'active sites' on a single copper catalyst.

For decades, scientists have searched for effective ways to remove excess carbon dioxide emissions from the air, and recycle them into products such as renewable fuels. But the process of converting carbon dioxide into useful chemicals is tedious, expensive, and wasteful and thus not economically or environmentally viable.

Now a discovery by researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and Joint Center for Artificial Photosynthesis (JCAP) shows that recycling carbon dioxide into valuable chemicals and fuels can be economical and efficient - all through a single copper catalyst.

Going where the action is: product-specific active sites
When you take a piece of copper metal, it may feel smooth to the touch, but at the microscopic level, the surface is actually bumpy - and these bumps are what scientists call "active sites," said Joel Ager, a researcher at JCAP who led the study. Ager is a staff scientist in Berkeley Lab's Materials Sciences Division and an adjunct professor in the Department of Materials Science and Engineering at UC Berkeley.

These active sites are where the magic of electrocatalysis takes place: electrons from the copper surface interact with carbon dioxide and water in a sequence of steps that transforms them into products like ethanol fuel; ethylene, the precursor to plastic bags; and propanol, an alcohol commonly used in the pharmaceutical industry.

Ever since the 1980s, when copper's talent for converting carbon into various useful products was discovered, it was always assumed that its active sites weren't product-specific - in other words, you could use copper as a catalyst for making ethanol, ethylene, propanol, or some other carbon-based chemical, but you would have to go through a lot of steps to separate unwanted, residual chemicals formed during the intermediate stages of a chemical reaction before arriving at your final destination - the chemical end-product.

"The goal of 'green' or sustainable chemistry is getting the product that you want during chemical synthesis," said Ager. "You don't want to separate things you don't want from the desirable products, because that's expensive and environmentally undesirable. And that expense and waste reduces the economic viability of carbon-based solar fuels."

So when Ager and co-author Yanwei Lum, who was a UC Berkeley Ph.D. student in Ager's lab at the time of the study, were investigating copper's catalytic properties for a solar fuels project, they wondered, "What if, like photosynthesis in nature, we could use electrons from solar cells to drive specific active sites of a copper catalyst to make a pure product stream of a carbon-based fuel or chemical?" Ager said.

Tracing a chemical's origins through its 'passport'
Previous studies had shown that "oxidized" or rusted copper is an excellent catalyst for making ethanol, ethylene, and propanol. The researchers theorized that if active sites in copper were actually product-specific, they could trace the chemicals' origins through carbon isotopes, "much like a passport with stamps telling us what countries they visited," Ager said.

"When we thought of the experiment, we thought that this is such an inobvious idea, that it would be crazy to try it," Ager said. "But we couldn't let it go, because we also thought it would work, as our previous research with isotopes had enabled us to discover new reaction pathways."

So for the next few months, Lum and Ager ran a series of experiments using two isotopes of carbon, carbon-12 and carbon-13, as "passport stamps." Carbon dioxide was labeled with carbon-12, and carbon monoxide - a key intermediate in the formation of carbon-carbon bonds - was labeled with carbon-13. According to their methodology, the researchers reasoned that the ratio of carbon-13 versus carbon-12 found in a product would determine from which active sites the chemical product originated.

After Lum ran dozens of experiments and used state-of-the-art mass spectrometry and NMR (nuclear magnetic resonance) spectroscopy at JCAP to analyze the results, they found that three of the products - ethylene, ethanol, and propanol - had different isotopic signatures showing that they came from different sites on the catalyst.

"This discovery motivates future work to isolate and identify these different sites," Lum said. "Putting these product-specific sites into a single catalyst could one day result in a very efficient and selective generation of chemical products," Lum said.

Greener days ahead for chemical manufacturing
The researchers' new methodology - what Ager describes as "straightforward chemistry with an environmental and economic twist" - is the beginning of what they hope could be a new beginning for green chemical manufacturing, where a solar cell could feed electrons to specific active sites within a copper catalyst to optimize the production of ethanol fuels.

"Perhaps one day this technology could make it possible to have something like an oil refinery, but powered by the sun, taking carbon dioxide out of the atmosphere and creating a stream of useful products," he said.

The work appears in the Dec. 17 edition of the journal Nature Catalysis.

Research paper


Related Links
Lawrence Berkeley National Laboratory
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Low-cost catalyst boosts hydrogen production from water
Toronto, Canada (SPX) Dec 17, 2018
A future powered by carbon-free fuel depends on our ability to harness and store energy from renewable but intermittent sources, such as solar and wind. Now, a new catalyst developed at University of Toronto Engineering gives a boost to a number of clean energy technologies that depend on producing hydrogen from water. In addition to being a key ingredient in everything from fuel to fertilizers, hydrogen has great potential as an energy storage medium. The idea would be to use renewable electricit ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Sun-soaking device turns water into superheated steam

DNV GL's on-site solar lab brings advanced and reliable PV testing to the field in India

Lithuanian scientists' approach to perovskite solar cells - cheaper production and high efficiency

Fighting smog supports solar power

BIO FUEL
Qatar buys stake from Eni to share in Mexico's Campeche field

Stennis, Essex perform joint exercises in Arabian Sea

Iran deal, Saudi murder: Turbulent year shakes up Middle East

Nigeria oil output may rise 60 percent by 2020

BIO FUEL
Climate talks must be rescued, warns UN chief

Saudi, US snub of climate report unsettles UN talks

US, Saudi, Russia 'insulted' key global warming report: Al Gore

Small islands plead for action at UN climate talks

BIO FUEL
Switching to a home battery won't help save the world from climate change

Argonne scientists maximize the effectiveness of platinum in fuel cells

An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Taming turbulence to make complex simulations a breeze

BIO FUEL
Obtaining polyester from plant oil

IIT researchers show how plants can generate electricity to power LED light bulbs

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst

WSU researchers reverse engineer way pine trees produce green chemicals worth billions

BIO FUEL
DNV GL forecasts rapid growth of electric vehicles: 50% of all new cars sold globally by 2033 to be electric

Uber filed paperwork for IPO: report

Lyft launches first step to take company public

Trump administration's fuel efficiency rollback 'deeply flawed': study

BIO FUEL
Red gold: Afghanistan saffron production grows

Egypt's fertile Nile Delta threatened by climate change

German farmers sue government over missed climate targets

Climate change offers sparkling prospects to English winemakers

BIO FUEL
Gaming firm settles VR lawsuit with Facebook-owned Oculus

Green production of chemicals for industry

Scientists discover a material breaking modern chemistry laws

The stiffest porous lightweight materials ever









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.