Energy News
BIO FUEL
Fungal garden cultivated by Leafcutter Ants provide insights into biofuels
File illustration of a leafcutter ant at work.
Fungal garden cultivated by Leafcutter Ants provide insights into biofuels
by Maegan Murray for PNNL News
Richland WA (SPX) Feb 02, 2024

Scientists have spent decades finding ways to efficiently and affordably degrade plant materials so that they can be converted into useful bioproducts that benefit everyday life.

Bio-based fuels, detergents, nutritional supplements, and even plastics are the result of this work. And while scientists have found ways to degrade plants to the extent needed to produce a range of products, certain polymers such as lignin, which is a primary ingredient in the cell wall of plants, remain incredibly difficult to affordably break down without adding pollutants back into the environment. These polymers can be left behind as waste products with no further use.

A specialized microbial community composed of fungus, leafcutter ants, and bacteria is known to naturally degrade plants, turning them into nutrients and other components that are absorbed and used by surrounding organisms and systems. But identifying all components and biochemical reactions needed for the process remained a significant challenge-until now.

As part of her Department of Energy (DOE) Early Career award, Kristin Burnum-Johnson, science group leader for Functional and Systems Biology at Pacific Northwest National Laboratory (PNNL), and a team of fellow PNNL researchers, developed an imaging method called metabolome informed proteome imaging (MIPI). This method allows scientists to peer deep down to the molecular level and view exactly what base components are part of the plant degradation process, as well as what, when, and where important biochemical reactions occur that make it possible.

Using this method, the team revealed important metabolites and enzymes that spur different biochemical reactions that are vital in the degradation process. They also revealed the purpose of resident bacteria in the system-which is to make the process even more efficient. These insights can be applied to future biofuels and bioproducts development.

The team's research was recently published in Nature Chemical Biology.

Symbiotic relationship between leafcutter ants and fungus reveal key to success in plant degradation
For its research, the team studied a type of fungus known for its symbiotic relationship with a species of leafcutter ants-a fungus known as Leucoagaricus gongylophorus. The ants use the fungus to cultivate a fungal garden that degrades plant polymers and other material. Remnant components from this degradation process are used and consumed by a variety of organisms in the garden, allowing all to thrive.

The ants accomplish this process by cultivating fungus on fresh leaves in specialized underground structures. These structures ultimately become the fungal gardens that consume the material. Resident bacterial members help with the degradation by producing amino acids and vitamins that support the overall garden ecosystem.

"Environmental systems have evolved over millions of years to be perfect symbiotic systems," Burnum-Johnson said. "How can we better learn from these systems than by observing how they accomplish these tasks naturally?"

But what makes this fungal community so difficult to study is its complexity. While the plants, fungus, ants, and bacteria are all active components in the plant degradation process, none of them focus on one task or reside in one location. Factor in the small-scale size of the biochemical reactions occurring at the molecular level, and an incredibly difficult puzzle presents itself. But the new MIPI imaging method developed at PNNL allows scientists to see exactly what is going on throughout the degradation process.

"We now have the tools to fully understand the intricacies of these systems and visualize them as a whole for the first time," Burnum-Johnson said.

Revealing important components in a complex system
Using a high-powered laser, the team took scans across 12-micron-thick sections of a fungal garden-the approximate width of plastic cling film. This process helped determine locations of metabolites in the samples, which are remnant products of plant degradation. This technique also helped identify the location and abundance of plant polymers such as cellulose, xylan, and lignin, as well as other molecules in specific regions. The combined locations of these components indicated hot spots where plant material had been broken down.

From there, the team homed in on those regions to see enzymes, which are used to kick start biochemical reactions in a living system. Knowing the type and location of these enzymes allowed them to determine which microbes were a part of that process.

All of these components together helped affirm the fungus as the primary degrader of the plant material in the system. Additionally, the team determined that the bacteria present in the system transformed previously digested plant polymers into metabolites that are used as vitamins and amino acids in the system. These vitamins and amino acids benefit the entire ecosystem by accelerating fungal growth and plant degradation.

Burnum-Johnson said if scientists had used other, more traditional methods that take bulk measurements of primary components in a system, such as metabolites, enzymes, and other molecules, they would simply get an average of those materials, creating more noise and masking information.

"It dilutes the important chemical reactions of interest, often making these processes undetectable," she said. "To analyze the complex environmental ecosystems of these fungal communities, we need to know those fine detail interactions. These conclusions can then be taken back into a lab setting and used to create biofuels and bioproducts that are important in our everyday life."

Using knowledge of complex systems for future fungal research
Marija Velickovic, a chemist and lead author of the paper, said she initially became interested in studying the fungal garden and how it degrades lignin based on the difficulty of the project.

"Fungal gardens are the most interesting because they are one of the most complex ecosystems composed of multiple members that effectively work together," she said. "I really wanted to map activities at the microscale level to better understand the role of each member in this complex ecosystem."

Velickovic performed all the hands-on experiments in the lab, collecting material for the slides, scanning the samples to view and identify metabolites in each of the sections, and identifying hot spots of lignocellulose degradation.

Both Velickovic and Burnum-Johnson said they are ecstatic about their team's success.

"We actually accomplished what we set out for," Burnum-Johnson said. "Especially in science, that isn't guaranteed."

The team plans to use its findings for further research, with specific plans to study how fungal communities respond and protect themselves amid disturbances and other perturbations.

"We now have an understanding of how these natural systems degrade plant material very well," Burnum-Johnson said. "By looking at complex environmental systems at this level, we can understand how they are performing that activity and capitalize on it to make biofuels and bioproducts."

Research Report:Mapping microhabitats of lignocellulose decomposition by a microbial consortium

Related Links
Pacific Northwest National Laboratory
Bio Fuel Technology and Application News

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
BIO FUEL
Synthetic aviation fuel has yet to take off in Europe: study
Paris (AFP) Jan 23, 2024
The EU has set targets for using synthetic sustainable aviation fuels in European flights but no projects to produce the fuel have yet received a final investment decision, a study published Wednesday said. Transport and Environment, a non-governmental organisation that promotes sustainable transport, said it had identified 25 large-scale industrial plus another 20 pilot projects to produce synthetic sustainable aviation fuel in Europe. However, it said none of these projects had yet to reach a ... read more

BIO FUEL
Perovskite LEDs achieve unprecedented lifespan with new sieving technique

Space reflectors could ensure bright future for solar power farms

NUS develops perovskite nanocrystal scintillators for precise single-proton detection

Innovative chiral molecule strategy boosts perovskite solar cell efficiency

BIO FUEL
'Not the end' of US strikes: White House

Study reveals major oil firms continue expanding fossil fuel extraction globally

US strikes in Yemen hit six Huthi anti-ship missiles: military

'Vanity project': a climate summit in oil-rich Azerbaijan

BIO FUEL
What's at stake as EU unveils 2040 climate target

Dutch climate protest ends with 1,000 arrests

Activists may escape prosecution over Mona Lisa soup attack

Biden taps insider Podesta as US climate envoy

BIO FUEL
Scientists create effective 'spark plug' for direct-drive inertial confinement fusion experiments

Rwanda signs lithium deal with Rio Tinto

Innovative use of femtosecond lasers converts glass into semiconductor

Innovative control of fusion plasma achieved through digital twin technology

BIO FUEL
Nickel Single-Atom Catalysts mark new era in CO2 to CO Electroreduction

Fungal garden cultivated by Leafcutter Ants provide insights into biofuels

Ants help reveal why sourcing different plants for eco fuels is crucial for biodiversity

Synthetic aviation fuel has yet to take off in Europe: study

BIO FUEL
Chinese EV giant BYD expects record net profit for 2023

Australia to set fuel efficiency standards after decades of debate

Parisians vote in anti-SUV parking price referendum

China's BYD says Hungary factory to start making cars in 3 years

BIO FUEL
EU walks farming minefield with new climate goals

Tajikistan wants to stockpile food over climate change

Fixing food could produce trillions in annual benefits: report

Protesting farmers block major roads into Paris

BIO FUEL
SmallCAT Laser Terminal Demonstrates Effective Space-Earth Communication in LEO

New rule for catalysts' design is as easy as counting to ten

The ShAPE of buildings to come: Scrap aluminum transforms recycling life cycle

Turning Cooking Oil By-Products and CO2 into Valuable Industrial Additives

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.