Low-cost catalyst boosts hydrogen production from water by Staff Writers Toronto, Canada (SPX) Dec 17, 2018
A future powered by carbon-free fuel depends on our ability to harness and store energy from renewable but intermittent sources, such as solar and wind. Now, a new catalyst developed at University of Toronto Engineering gives a boost to a number of clean energy technologies that depend on producing hydrogen from water. In addition to being a key ingredient in everything from fuel to fertilizers, hydrogen has great potential as an energy storage medium. The idea would be to use renewable electricity to produce hydrogen from water, then later reverse the process in an electrochemical fuel cell, resulting in clean power on demand. "Hydrogen is a hugely important industrial feedstock, but unfortunately today it is derived overwhelmingly from fossil fuels, resulting in a large carbon footprint," says Professor Ted Sargent, senior author on a paper in Nature Energy that describes the new catalyst. "Electrolysis - water splitting to produce renewable hydrogen and oxygen - is a compelling technology, but it needs further improvements in efficiency, cost, and longevity. This work offers a fresh strategy to pursue these critically important aims." Sargent's lab is among several research groups around the world racing to create catalysts that lower the amount of electricity needed to split water into hydrogen and oxygen. Currently, the best-performing catalysts rely on platinum, a high-cost material, and operate under acidic conditions. "Our new catalyst is made from copper, nickel and chromium, which are all more abundant and less costly than platinum," says Cao-Thang Dinh, a co-lead author on the paper along with his fellow postdoctoral researchers Pelayo Garcia De Arquer and Ankit Jain. "But what's most exciting is that it performs well under pH-neutral conditions, which opens up a number of possibilities." Seawater is the most abundant source of water on earth, Dinh points out. But using seawater with traditional catalysts under acidic conditions would require the salt to be removed first, an energy-intensive process. Operating at neutral pH avoids the high cost of desalination. It could also enable the use of microorganisms to make chemicals such as methanol and ethanol. "There are bacteria that can combine hydrogen and CO2 to make hydrocarbon fuels," says Garcia De Arquer. "They could grow in the same water and take up the hydrogen as it's being made, but they cannot survive under acidic conditions." Using renewable energy to convert waste CO2 into fuels or other value-added products is the goal of the NRG COSIA Carbon XPrize. A team from Sargent's lab is among the five finalists in the international competition, vying for the US $7.5-million grand prize.
WSU researchers reverse engineer way pine trees produce green chemicals worth billions Pullman WA (SPX) Dec 13, 2018 Washington State University researchers have reverse engineered the way a pine tree produces a resin, which could serve as an environmentally friendly alternative to a range of fossil-fuel based products worth billions of dollars. Mark Lange and colleagues in the Institute for Biological Chemistry literally dissected the machinery by which loblolly pine produces oleoresin. Before the arrival of petroleum-derived alternatives in the 1960s, the sticky, fragrant oil-resin mixture was central to ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |