Energy News  
BIO FUEL
Microbe "rewiring" technique promises a boom in biomanufacturing
by Staff Writers
Berkeley CA (SPX) Nov 11, 2020

A two-liter bioreactor containing an E. coli culture that has undergone metabolic rewiring to produce indigoidine all the time.

Researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) have achieved unprecedented success in modifying a microbe to efficiently produce a compound of interest using a computational model and CRISPR-based gene editing.

Their approach could dramatically speed up the research and development phase for new biomanufacturing processes, and get cutting-edge bio-based products such as sustainable fuels and plastic alternatives on the shelves faster.

The process uses computer algorithms - based on real-world experimental data - to identify what genes in a "host" microbe could be switched off to redirect the organism's energy toward producing high quantities of a target compound, rather than its normal soup of metabolic products.

Currently, many scientists in this field still rely on ad hoc, trial-and-error experiments to identify what gene modifications lead to improvements. Additionally, most microbes used in biomanufacturing processes that produce a nonnative compound - meaning the genes to make it have been inserted into the host genome - can only generate large quantities of the target compound after the microbe has reached a certain growth phase, resulting in slow processes that waste energy while incubating the microbes.

The team's streamlined metabolic rewiring process, coined "product/substrate pairing," makes it so the microbe's entire metabolism is linked to making the compound at all times.

To test product/substrate pairing, the team performed experiments with a promising emerging host - a soil microbe called Pseudomonas putida - that had been engineered to carry the genes to make indigoidine, a blue pigment.

The scientists evaluated 63 potential rewiring strategies and, using a workflow that systematically evaluates possible outcomes for desirable host characteristics, determined that only one of these was experimentally realistic. Then, they performed CRISPR interference (CRISPRi) to block the expression of 14 genes, as guided by their computational predictions.

"We were thrilled to see that our strain produced extremely high yields of indigoidine after we targeted such a large number of genes simultaneously," said co-lead author Deepanwita Banerjee, a postdoctoral researcher at the Joint BioEnergy Institute (JBEI), which is managed by Berkeley Lab.

"The current standard for metabolic rewiring is to laboriously target one gene at a time, rather than many genes all at once," she said, noting that before this paper there was only one previous study in metabolic engineering in which the authors targeted six genes for knockdown.

"We have substantially raised the upper limit on simultaneous modifications by using powerful CRISPRi-based approaches. This now opens up the field to consider computational optimization methods even when they necessitate a large number of genetic modifications, because they can truly lead to transformative output," said Banerjee.

Co-lead author Thomas Eng, a JBEI research scientist, added, "With product/substrate pairing, we believe we can significantly reduce the time it takes to develop a commercial-scale biomanufacturing process with our rationally designed process. It's daunting to think of the sheer number of research years and people hours spent on developing artemisinin (an antimalarial) or 1-3,butanediol (a chemical used to make plastics) - about five to 10 years from the lab notebook to pilot plant. Dramatically reducing R and D time scales is what we need to make tomorrow's bioeconomy a reality," he said.

Examples of target compounds under investigation at Berkeley Lab include isopentenol, a promising biofuel; components of flame-retardant materials; and replacements for petroleum-derived starter molecules used in industry, such as nylon precursors. Many other groups use biomanufacturing to produce advanced medicines.

Principal investigator Aindrila Mukhopadhyay explained that the team's success came from its multidisciplinary approach. "Not only did this work require rigorous computational modeling and state-of-the-art genetics, we also relied on our collaborators at the Advanced Biofuels and Bioproducts Process Development Unit (ABPDU) to demonstrate that our process could hold its desirable features at higher production scales," said Mukhopadhyay, who is the vice president of the biofuels and bioproducts division and director of the host engineering group at JBEI.

"We also collaborated with the Department of Energy (DOE) Joint Genome Institute to characterize our strain. Not surprisingly, we anticipate many such future collaborations to examine the economic value of the improvements we obtained, and to delve deeper in characterizing this drastic metabolic rewiring."

Research paper


Related Links
Lawrence Berkeley National Laboratory
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Tough, strong and heat-endure: Bioinspired material to oust plastics
Hefei, China (SPX) Nov 10, 2020
Modern life relies closely on plastics, even though the petroleum-based production creates serious environmental challenges. The industry opts out to use sustainable materials due to their limited mechanical properties or complex manufacturing processes. An advanced strategy to design and produce high-performance sustainable structural materials is of great need. A new bioinspired material is here to overtake petroleum-based plastics. A team led by Prof. Shu-Hong Yu from the University of Science ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Lead-free magnetic perovskites

Research lays groundwork for ultra-thin, energy efficient photodetector on glass

How to accelerate solar adoption for the underserved

NTU scientists develop energy-saving 'liquid window'

BIO FUEL
Catching the number 1: Aberdeen trials hydrogen buses

G20 backslides on fossil fuel subsidies: report

Swiss financial sector still stuck in fossil fuels: report

Malaysia's Petronas aims for 'net zero' emissions by 2050

BIO FUEL
US formally quits Paris agreement but Biden pledges return

Humans in ancient Turkey adapted to climate change, thrived

Expect more mega-droughts

New website puts climate in your hands

BIO FUEL
Boosting the capacity of supercapacitors

Predictive model reveals function of promising energy harvester device

Infrared light antenna powers molecular motor

Realistic simulation of plasma edge instabilities in tokamaks

BIO FUEL
Luminescent wood could light up homes of the future

Tough, strong and heat-endure: Bioinspired material to oust plastics

New protein nanobioreactor designed to improve sustainable bioenergy production

Room temperature conversion of CO2 to CO: A new way to synthesize hydrocarbons

BIO FUEL
Utilizing a 'krafty' waste product: Toward enhancing vehicle fuel economy

ULEMCo collaborates with JCB and Bucher to produce new hydrogen vehicle

GM says earnings jump 72%, cites improving auto demand in US, China

Greek island to shift to electric mobility with VW

BIO FUEL
Satellite remote sensing integration with Jain Logic makes growers more productive

See-through soil substitutes help scientists study soil ecology

Self-watering soil could transform farming

Mobile food tracking app may offer farm-to-table transparency

BIO FUEL
Monitoring open-cast mines better than before

3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

Printing self-folding paper structures for future mechatronics

Portrait transmitted via 3D printing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.