Subscribe free to our newsletters via your
. Bio Fuel News .




BIO FUEL
Novel cellulose structure requires fewer enzymes to process biomass to fuel
by Staff Writers
Los Alamos NM (SPX) Jun 24, 2013


An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit - Shishir Chundawat, Great Lakes Bioenergy Research Center.

Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production and the subject of new research from Los Alamos National Laboratory (LANL) and the Great Lakes Bioenergy Research Center (GLBRC). Scientists are investigating the unique properties of crystalline cellulose nanofibers to develop novel chemical pretreatments and designer enzymes for biofuel production from cellulosic-or non-food-plant derived biomass.

"Cellulose is laid out in plant cell walls as crystalline nanofibers, like steel reinforcements embedded in concrete columns," says GLBRC's Shishir Chundawat.

"The key to cheaper biofuel production is to unravel these tightly packed nanofibers more efficiently into soluble sugars using fewer enzymes."

An article published this week in the Proceedings of the National Academy of Sciences suggests-counter-intuitively-that increased binding of enzymes to cellulose polymers doesn't always lead to faster breakdown into simple sugars.

In fact, Chundawat's research team found that using novel biomass pretreatments to convert cellulose to a unique crystalline structure called cellulose III reduced native enzyme binding while increasing sugar yields by as much as five times.

"The ability of this unconventional pretreatment strategy, currently under development at GLBRC, to selectively alter the cellulose crystal structure may lead to an order of magnitude reduction in enzyme usage. This will be critical for cost-effective cellulosic biofuel production," says Bruce Dale of Michigan State University, who leads GLBRC's biomass deconstruction research area.

The researchers had previously demonstrated that altering the crystal structure of native cellulose to cellulose III accelerates enzymatic deconstruction; however, the recent observation that cellulose III increased sugar yields with reduced levels of bound enzyme was unexpected.

To explain this finding, Chundawat and a team of LANL researchers led by Gnana Gnanakaran and Anurag Sethi developed a mechanistic kinetic model indicating that the relationship between enzyme affinity for cellulose and catalytic efficiency is more complex than previously thought.

Cellulose III was found to have a less sticky surface that makes it harder for native enzymes to get stuck non-productively on it, unlike untreated cellulose surfaces.

The model further predicts that the enhanced enzyme activity, despite reduced binding, is due to the relative ease with which enzymes are able to pull out individual cellulose III chains from the pretreated nanofiber surface and then break them apart into simple sugars.

"These findings are exciting because they may catalyze future development of novel engineered enzymes that are further tailored for conversion of cellulose III rich pretreated biomass to cheaper fuels and other useful compounds that are currently derived from non-renewable fossil fuels," says Gnanakaran.

"Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis" PNAS 2013; published ahead of print June 19, 2013, doi:10.1073/pnas.1213426110.

.


Related Links
Los Alamos National Laboratory
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Novel Enzyme from Tiny Gribble Could Prove a Boon for Biofuels Research
Golden CO (SPX) Jun 21, 2013
Researchers from the United Kingdom, the Energy Department's National Renewable Energy Laboratory (NREL), and the University of Kentucky have recently published a paper describing a novel cellulose-degrading enzyme from a marine wood borer Limnoria quadripunctata, commonly known as the gribble. Gribbles are biologically intriguing because they exhibit a relatively unique ability to produce ... read more


BIO FUEL
Future looks bright for carbon nanotube solar cells

Uncovering quantum secret in photosynthesis

EU trade chief sees speedy end to China solar row

Qatar comes to rescue of Germany's Solarworld

BIO FUEL
Novel Enzyme from Tiny Gribble Could Prove a Boon for Biofuels Research

A cheaper drive to 'cool' fuels

When green algae run out of air

An environmentally friendly battery made from wood

BIO FUEL
Spanish downturn a disaster for green energy

New certified small wind turbine announced for US market

Mongolia confronts smog with launch of first wind farm

New certified small wind turbine announced for US market

BIO FUEL
Fracking raises risk of contaminated drinking water: study

Iraq oil exports dip on weather, sabotage

Oil prices ease on US, China concerns

Stray gases found in water wells near shale gas sites

BIO FUEL
John Kerry promotes clean energy in India

EU Parliament committee passes revised emissions trading scheme fix

World cities improving energy efficiency: report

China launches first carbon trading scheme

BIO FUEL
Arnie defends his Hummer fleet as eco-friendly

Wolf urine, lion's roar keep deer from Japan transport

Tesla recalls Model S cars over problem weld

US auto giant GM plans to invest $11 billion in China

BIO FUEL
Pesticides tainting traditional China herbs: Greenpeace

Research suggests plants capable of employing quantum physics

Talks on EU agriculture policy reforms in make-or-break stage

African palm oil makers hit back at global 'smear campaign'

BIO FUEL
Noble gases hitch a ride on hydrous minerals

'Chemical architects' build materials with potential applications in drug delivery and gas storage

Researchers Propose New Method for Achieving Nonlinear Optical Effects

Unexpected behavior of well-known catalysts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement