ONR engineers innovative research in synthetic biology by Staff Writers Washington DC (SPX) Feb 23, 2016
An exciting new scientific frontier - synthetic biology - took center stage as a celebrated scientist from the Massachusetts Institute of Technology (MIT) recently spoke at the headquarters of the Office of Naval Research (ONR). As part of a Distinguished Lecture Series celebrating ONR's 70th anniversary, world-class scientists, researchers and experts from diverse fields will be speaking at ONR in 2016. Dr. Christopher Voigt, an MIT professor of biological engineering, inaugurated the lecture series with a look at the revolutionary potential of synthetic biology. Synthetic biology involves creating or re-engineering microbes or other organisms to perform specific tasks like monitoring chemical threats, creating biofuels and even improving the health and physical performance of warfighters. The field was identified by Chief of Naval Research Rear Adm. Mat Winter as a top priority because of its far-ranging and broad-based impact on warfighter performance and fleet capabilities. "ONR first realized the promise of this field over a decade ago to provide future naval forces with new, innovative approaches for threat detection, environmental sensing and enhancement of warfighter health and performance," said Winter. "This platform could define the 21st century - impacting health, the environment and military capabilities." An ONR-supported performer since 2006, Voigt used concepts and techniques from electrical engineering to manipulate and program a cell's circuitry. With these tools, scientists can engineer bacteria like Escherichia coli to carry out functions such as detecting specific light wavelengths or toxic chemicals. "Dr. Voigt was among the first to say electrical engineering principles could be useful in synthetic biology," said Dr. Linda Chrisey, a program officer in ONR's Warfighter Performance Department. "The programming language he helped develop allows you to program a cell's circuitry much like you would a computer or robot." That partnership paid off for ONR, which has since worked with university researchers like Voigt to unearth ways to use the smallest units of life to help Sailors and Marines execute their mission.
Research areas include: + Threat detection: This involves designing highly sensitive microbes (which could be placed on a silicon chip and attached to unmanned vehicles) that could potentially sense the presence of pollutants, toxic chemicals or explosives like trinitrotoluene (TNT). Recent successes include creating a "smart" plant that turns white when it detects TNT. + Biofuels: Specially engineered microbes with carbon dioxide-based metabolisms can use electrical currents to produce butanol, an alternative fuel. This same process might be able to make certain types of medicines or foods in remote locations. "Right now, the research into synthetic biology is very basic and still in its early stages," said Chrisey. "However, the future implications could be huge. Using cells to sense and process information would allow the Navy to reduce the size and weight of its current systems and make them more energy efficient. "We also hope to use synthetic biology to enhance warfighter performance," she continued, "by reducing susceptibility to stressors such as jet lag, noise and changes in altitude and temperature - by using the microbes that are naturally inside all of us."
Related Links Office of Naval Research Bio Fuel Technology and Application News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |