Protein Power for Jack and the Beanstalk
Tel Aviv, Israel (SPX) May 20, 2010 Plant geneticists are on a determined quest - to control auxin, a powerful plant growth hormone. Auxin tells plants how to grow, where to lay down roots, how to make tissues, and how to respond to light and gravity. Knowing how to manipulate auxin could thus have enormous implications for the production of biofuel, making plants grow faster and better. A recent publication in the journal PLoS Biology from the laboratory of Prof. Shaul Yalovsky of Tel Aviv University's Molecular Biology and Ecology of Plants Department describes a special protein, the ICR1, found to control the way auxin moves throughout a plant affecting its development. When this protein is genetically engineered into valuable biofuel crops such as corn, sugarcane or experimentals like switchgrass, farmers can expect to get a far larger yield than what they harvest today, Prof. Yalovsky has found. In short, much more biofuel for the buck. "We've found a mechanism that helps the shoot and root talk to each other," says Prof. Yalovsky. "Somehow both parts of the plant need to speak to each other to say: 'Hey down there, I'm up here and there's lots of sun,' or 'I'm down here in the roots and it's too dry." The plant's shoots need to respond to its environment. We've discovered the mechanism that helps auxin do its job."
Putting energy into sugar Efficiency is now a limiting factor in biofuel production, and scientists are looking for anything that can produce biofuel in the same amounts as the production of traditional fossil-based fuels. The ICR1 protein that Prof. Yalovsky has isolated works together with a group of proteins called ROPs, which his lab also isolated in previous research. Together, this system of work in harmony to manipulate the composition and vascular tissues of plant cell walls. The researchers found specifically that ICR1 can be manipulated and, as a consequence, influence auxin distribution in plants. Plant scientists now have a tool that allows breeders to grow certain plant organs of choice, with the possibility of manipulating plant cell wall composition - the kinds of tissues needed in making biofuel. In the PLoS Biology report published recently, the researchers spell out the links between the mechanisms that regulate cell structure and the development of the whole plant. The ICR1, they explain, influences the way the hormone auxin moves around the plant.
Breaking down the walls Ideally crop growers want to maximize the amount of cellulose in the plant, which can be broken down to make sugar for ethanol. The new system found in proteins and developed at Tel Aviv University has the potential to increase crop yield and make fuel production more cost-effective. His approach could mean less lignin, more cellulose and ultimately more biofuel, says Prof. Yalovsky.
Share This Article With Planet Earth
Related Links - Bio Fuel Technology and Application News
Nestle eyes resuming ties in Indonesia palm oil controversy Kuala Lumpur (AFP) May 17, 2010 Food giant Nestle will resume buying palm oil from Indonesian giant Sinar Mas if an independent audit clears the Jakarta-based firm of claims it is devastating rainforest, a Nestle official said Monday. The world's largest food company dropped Sinar Mas - Indonesia's biggest palm oil firm - as a supplier in March following protests by environmental group Greenpeace, after Anglo-Dutch compa ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |