Saving the climate with solar fuel by Staff Writers Dubendorf, Switzerland (SPX) Jun 10, 2021
Mobility analyses show: Only a small proportion of all vehicles are responsible for the majority of the kilometers driven. We are talking above all about long-distance trucks that transport goods all over Europe. If these continue to be fueled with fossil energy, it will hardly be possible to sufficiently reduce CO2 emissions in road traffic. Synthetic fuels from surplus renewable electricity can make a significant contribution to such frequent driver applications. With electric mobility, hydrogen mobility and synthetic fuels, Empa's future mobility demonstrator, "move", is investigating three paths for CO2 reduction in road traffic against the background of a rapidly changing energy system. "All these concepts have advantages and drawbacks in terms of energy, operation and economics. In order to use them in a smart way, we need a deeper understanding of the overall system," says Christian Bach, Head of Empa's Automotive Powertrain Technologies lab. "Together with our 'move' partners, we are working to develop knowledge that can be put into practice." The latest project focuses on the production of synthetic methane from hydrogen and CO2 - the so-called methanization. Such fuels, produced synthetically with renewable energy - thus called synfuel or syngas -, can be transported via conventional routes and made available through the existing infrastructure. This is of interest for Switzerland as well as globally, because it opens up an enormous potential for renewable energy.
A methanization process developed at Empa The water is causing problems with conventional processes, however: To remove it, serial methanization stages are typically required - with condensation areas in between. Due to the high reaction temperatures, a proportion of the water is converted back into hydrogen by the so-called water-gas shift reaction. The gaseous product of the methanization reaction thus contains a few percent hydrogen, which prevents direct feeding into the gas grid; the hydrogen must first be removed.
CO2 and water from the air "Both hydrogen production and methanization continuously generate waste heat," says Bach. "By means of a clever heat management, we want to cover the heat requirements of the CO2 collector as much as possible with this waste heat". In addition to CO2, the Climeworks plant also extracts water from ambient air, which is used for hydrogen production in the electrolysis device. This means that such plants are also conceivable in regions without water supply, for example in deserts. In addition to new knowledge about technical and energetic aspects, insights about the economic efficiency of synthetic methane are one of the project's prime goals. "In order to ensure this holistic perspective, the project consortium consists of partners who cover the entire value chain - from Empa researchers to energy suppliers, filling station and fleet operators and industrial partners in the technology and plant sectors," says Brigitte Buchmann, member of Empa's Board of Directors and strategic head of "move". The project is supported by the Canton of Zurich, the ETH Board, Avenergy Suisse, Migros, Lidl Switzerland, Glattwerk, Armasuisse and Swisspower. Currently, Christian Bach's team is concentrating on the investigation of water adsorption on porous materials and the process control of the catalytic reaction. Construction of the plant is planned for mid-2021. "About a year later, we want to refuel the first vehicle," says Buchmann. "With methane from solar energy."
Synthetic fuels from the desert? In the southern hemisphere it is the other way round. But there are also areas with almost continuous sunshine - the so-called sun belt, in which the large deserts of the Earth are located. "From a global perspective, we do not have too little renewable energy worldwide, but "merely" an energy transport problem," says Christian Bach. Synthetic energy carriers could help solve this problem. Smaller plants in Switzerland can make a valuable contribution to the national energy system by harnessing surplus summer electricity and connecting different energy sectors. However, large plants could exploit their full potential above all in the Earth's sunbelt. This is illustrated by a simple calculation: In order to cover Switzerland's energy needs during winter not covered by hydropower as well as all long-distance domestic traffic exclusively with (imported) synthetic energy sources, a solar power plant would be required in a desert with an area of approximately 700 km2; that is 27 x 27 km or, in other words, 0.008% of the area of the Sahara. The water and CO2 needed for production could be extracted locally from the atmosphere (see main text). "Existing trade mechanisms, transport infrastructures, standards and expertise could simply be used further," says Bach. So could the plant in "move" soon be a model for a gigawatt plant in the desert?
Transforming CO2 into light-emitting carbon Ottawa, Canada (SPX) Jun 04, 2021 A team of researchers at the University of Ottawa has found a way to use visible light to transform carbon dioxide gas, or CO2, into solid carbon forms that emit light. This development creates a new, low-energy CO2 reduction pathway to solid carbon that will have implications across many fields. We talked to lead author Dr. Jaspreet Walia, Post-Doctoral Fellow in the School of Electrical Engineering and Computer Science at the University of Ottawa, and research lead Dr. Pierre Berini, uOttawa Dis ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |