Study Paves Way For New Biofuel Technologies
Raleigh NC (SPX) May 11, 2010 Biofuels hold promise as environmentally friendly sources of renewable energy, but which ones should industry and policy leaders focus their efforts on developing? A new study involving researchers from North Carolina State University offers detailed insights into how biofuel chemicals react when burned. Their data and new computer models pave the way for development of new biofuels and technologies to maximize energy efficiency while minimizing environmental and human health risks. "Biofuels are a sensible choice as a renewable energy source, but of course there are complications," says Dr. Phillip Westmoreland, a co-author of the study, professor of chemical and biomolecular engineering and director of the Institute for Computational Science and Engineering at NC State. "All of the biofuels have pros and cons, and you can't manage or plan for use and risks unless you understand them enough." The new paper helps define these risks by finding the network of chemical steps that take place when biofuels are burned. An invited overview for Angewandte Chemie, one of the world's premier chemistry journals, the paper draws on landmark research conducted by Westmoreland and his co-authors from research institutions in the United States, Germany and China. "By studying individual chemicals that make up biofuels, we were able to explain what emissions result from burning real biofuels," Westmoreland says. "We can measure the individual intermediates and chemical reactions, helping us craft models that reveal what chemicals are emitted, and in what amounts, by various biofuels. These models can be used to design new engines, new fuels and new policies that foster environmentally sustainable and efficient energy solutions. "This is important for regulation, where policy makers are weighing the environmental and health costs versus the energy benefits of different biofuels, but it is also essential to decision makers in the business community. Industry does not want to invest in developing biofuels and related technologies that can't pass policy muster, and this research will help them make educated investment decisions." The paper draws on information the researchers have collected about the chemicals produced when biofuels are burned, and how those chemicals change during the combustion process. These insights stem from the use of a novel experimental apparatus the researchers built at Lawrence Berkeley National Laboratory and a second system in Hefei, China - which provide unprecedented detail as to exactly what is happening at a molecular level when biofuels are burned. The paper, "Biofuel combustion chemistry: from ethanol to biodiesel," is the featured cover article in the May 3 issue of Angewandte Chemie. The paper was co-authored by researchers from NC State, Bielefeld University in Germany, Cornell University, Sandia National Laboratories, the University of Science and Technology of China and Lawrence Livermore National Laboratory. "Biofuel combustion chemistry: from ethanol to biodiesel" Authors: Katharina Hohse-Hoinghaus, Patrick Osswald, Bielefeld University (Germany); Terrill A. Cool, Cornell University; Tina Kasper, Nils Hansen, Sandia National Laboratories; Fei Qi, University of Science and Technology of China; Charles K. Westbrook, Lawrence Livermore National Laboratory; Phillip R. Westmoreland, North Carolina State University.
Share This Article With Planet Earth
Related Links North Carolina State University Bio Fuel Technology and Application News
Indian biofuel efforts falter New Delhi (UPI) Apr 27, 2010 Indian efforts to cultivate jatropha as an alternative biofuel have stalled. The Business Standard reported Tuesday that the Indian government had hoped that jatropha could replace one-fifth of India's diesel consumption by next year. The government consequently identified 98 million acres of available land where jatropha could be cultivated. Jatropha has long been promoted as a ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |