Energy News  
BIO FUEL
Sweet promise for the environment
by Staff Writers
Karlsruher, Germany (SPX) Jun 18, 2021

The KIT1 sorghum variety developed by KIT accumulates a high amount of sugar and thrives particularly well under temperate climate conditions.

Sweet sorghum can be used to produce biogas, biofuels, and novel polymers. In addition, it can help replace phosphate fertilizers. A new sweet sorghum variety developed at Karlsruhe Institute of Technology (KIT) accumulates particularly high amounts of sugar and thrives under local conditions. As the scientists reported in the Industrial Crops and Products journal, sugar transport and sugar accumulation are related to the structure of the plants' vessels. This was the result of a comparison between sweet and grain sorghums.

As the world's population grows, the demand for food, raw materials, and energy is also on the rise. This increases the burden on the environment and the climate. One strategy to reduce greenhouse gas emissions is to grow so-called C4 crops. These carry out photosynthesis particularly efficiently, are therefore more effective in fixing carbon dioxide (CO2), and build up more biomass than other plants. Usually, they are native to sunny and warm places.

One of the C4 plants is sorghum, also known as great millet, a species of the sorghum genus in the sweet grass family. The varieties that are particularly rich in sugar are called sweet sorghum (Sorghum bicolor L. Moench). Other varieties include grain sorghum used as animal feed. Sorghum can be grown on so-called marginal land, which is difficult to cultivate, so it does not compete with other food or forage crops.

A new sweet sorghum variety called KIT1 has been developed by Dr. Adnan Kanbar in the Molecular Cell Biology Division research group headed by Professor Peter Nick at the Botanical Institute of KIT. KIT1 accumulates particularly high amounts of sugar and thrives especially well under temperate climate conditions.

It can be used both energetically, i.e. for the production of biogas and biofuels, and as a base material for the production of novel polymers. The estimated sugar yield per hectare is over 4.4 tons, which would correspond to almost 3,000 liters of bioethanol. In addition, the digestate produced during biogas production can be used for fertilizers to replace phosphate fertilizer, which will soon be in short supply.

The Plant Stem Anatomy is What Matters
Researchers at Nick's laboratory, which is part of the Institute for Applied Biosciences, and their colleagues at the Institute for Technical Chemistry at KIT and at ARCUS Greencycling Technology in Ludwigsburg compared the KIT1 sweet sorghum and Razinieh grain sorghum varieties in order to investigate the different sugar accumulation behaviors in the plant stem.

For the study, published in the Industrial Crops and Products journal, the team looked at the stem anatomy. This includes the thickened areas (nodes) and the narrow areas or spaces between nodes (internodes), but also transcripts of important sucrose transporter genes as well as stress responses of plants to high salt concentrations in the soil.

Sugar accumulation was highest in the central internodes in both genotypes. However, a relationship was found between sugar accumulation and the structure of the vessels that serve to transport water, solutes, and organic substances. The vessels are grouped into vascular bundles.

These consist of the phloem (bast part) and the xylem (wood part). The phloem mainly transports sugars and amino acids, while the xylem's primary function is to transport water and inorganic salts; in addition, the xylem has a supporting function.

The study revealed that in KIT1 and five other sweet sorghum varieties, the phloem cross-sectional area in the stem is much larger than the xylem cross-sectional area - the difference is much more pronounced than in the Razinieh grain sorghum variety. "Our study is the first one to look at the relationship between the structure of the vascular bundles and sugar accumulation in the stem," Nick says.

Sweet Sorghum Copes Better with Salinity Stress
As the study further revealed, salinity stress led to higher sugar accumulation in KIT1 than in Razinieh. The expression of sucrose transporter genes was higher in KIT1 leaves under normal conditions, and increased significantly under salinity stress.

"Besides anatomical factors, there also some molecular factors that might contribute to regulating sugar accumulation in the stem," Kanbar explains. "In any case, KIT1 responds better to salinity stress." (or)

Research Report: "Sweet versus grain sorghum: Differential sugar transport and accumulation are linked with vascular bundle architecture"


Related Links
Karlsruhe Institute of Technology
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Significantly lower climate impact of contrails when using sustainable fuels
Ramstein, Germany (SPX) Jun 18, 2021
The warming effect from contrails represents the largest contributor to the climate impact of air transport, having an even greater effect than carbon dioxide. Now, researchers at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR), working together with the US National Aeronautics and Space Administration (NASA), have found that the climate impact of contrails can be reduced. Using a 50-50 blend of kerosene and Sustainable Aviation Fuel (SAF), they achieved a halving of t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Togo launches West Africa's largest solar plant

Computers help researchers find materials to turn solar power into hydrogen

Solar energy collectors grown from 2D perovskite seeds

Outstanding organic solar cells' performance achieved by using new technology

BIO FUEL
Producing hydrogen using less energy

Advancing research on environmentally friendly, hydrogen-enriched fuel

Quaise Inc. drilling technology could allow geothermal to power the world

Unitized regenerative fuel cells for improved hydrogen production and power generation

BIO FUEL
Leaked UN climate report a call to 'act'

Crushing climate impacts to hit sooner than feared: draft UN report

UN climate talks wrap up after meagre progress

Climate activists file lawsuit against French PM, ministers

BIO FUEL
Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery

Exotic superconductors: The secret that wasn't there

A novel energy storage solution featuring pipes and anchors

Low-cost imaging technique shows how smartphone batteries could charge in minutes

BIO FUEL
Recycling robot could help solve soft plastic waste crisis

Sweet promise for the environment

Transforming CO2 and sugars into biofuel

Significantly lower climate impact of contrails when using sustainable fuels

BIO FUEL
Audi to stop making fossil fuel cars by 2033: CEO

E-scooters as a new micro-mobility service

Europe powers up electric car battery drive

Waymo raises $2.5 bn to rev self-driving cars

BIO FUEL
Climate change likely contributed to 'catastrophic' French frost: scientists

Swiss snub synthetic pesticide ban plan

France breaks up eel smuggling ring serving Asia

UN report: Aquaculture linked with harmful algal blooms

BIO FUEL
Compact quantum computer for server centers

Meringue-like material could make aircraft as quiet as a hairdryer

Juice moves into Large Space Simulator

G7 nations commit to the safe and sustainable use of space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.