Switchgrass Produces Biomass Efficiently
Madison WI (SPX) Nov 27, 2009 A USDOE and USDA study concluded that 50 million U.S. acres of cropland, idle cropland, and cropland pasture could be converted from current uses to the production of perennial grasses, such as switchgrass, from which biomass could be harvested for use as a biofuel feedstock. Economically viable production of a perennial grass monoculture from which substantial quantities of biomass are removed annually is expected to require nitrogen fertilizer. An agronomist at Oklahoma State University, Regents Professor Emeritus Charles Taliaferro, designed and conducted an experiment to determine biomass yield from alternative levels of nitrogen fertilizer for a single and double harvest per year system for four perennial grass species (bermudagrass, flaccidgrass, lovegrass, and switchgrass). Agricultural economics graduate student, Mohua Haque, used the data produced in the field experiments to determine the most economical species, level of nitrogen, and harvest frequency for several sets of nitrogen fertilizer prices and hypothetical biomass prices. The study was funded by the USDA Cooperative State Research, Education, and Extension Service and by Oklahoma State University. Results from the study were published in the November-December issue of the Agronomy Journal. Haque explains, "For the soil and weather conditions that prevailed at the experiment site for the duration of the study, switchgrass clearly produced more dry biomass per dollar cost than the other three species. If perennial grass for biofuel feedstock is the best alternative for a field, and if the biomass price exceeds the cost of production, the optimal strategy would be to establish switchgrass, and in post-establishment years, to fertilize with 60 pounds of nitrogen per acre per year, and to harvest once per year after senescence." If an economically viable system for conversion of biomass from perennial grasses to biofuels is developed, millions of acres may be bid from current uses and seeded to switchgrass. Results from the study will be incorporated into a model at Oklahoma State University to evaluate the economic potential of alternative cellulosic biofuels production systems for Oklahoma. The goal of the research effort is to construct and solve models to determine the optimal number, size, and locations of cellulosic biorefineries, feedstock production counties, harvest months, fertilizer levels, number of harvest machines, storage strategy, and feedstock transportation flows. Share This Article With Planet Earth
Related Links American Society of Agronomy Bio Fuel Technology and Application News
Arctic Expedition Investigates Climate Change And Alternative Fuels Washington DC (SPX) Nov 27, 2009 Scientists from the Marine Biogeochemistry and Geology and Geophysics sections of the Naval Research Laboratory (NRL) organized and led a team of university and government scientists on an Arctic expedition to initiate methane hydrate exploration in the Beaufort Sea and determine the spatial variation of sediment contribution to Arctic climate change. Utilizing the U.S. Coast Guard Cutter ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2009 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |