Energy News  
BIO FUEL
Turning hazelnut shells into potential renewable energy source
by Staff Writers
Washington DC (SPX) Aug 25, 2021

Tube furnace pyrolysis reactor.

Biomass is attracting growing interest from researchers as a source of renewable, sustainable, and clean energy. It can be converted into bio-oil by thermochemical methods, such as gasification, liquefaction, and pyrolysis, and used to produce fuels, chemicals, and biomaterials.

In Journal for Renewable and Sustainable Energy, researchers from Heilongjiang Academy of Agricultural Machinery Sciences in China share their work on the physicochemical properties and antioxidant activity of wood vinegar and tar fraction in bio-oil produced from hazelnut shells pyrolysis at 400 degrees Celsius to 1,000 C.

Wood vinegar is often used in agricultural fields as insect repellent, fertilizer, and plant growth promoter or inhibitor, and can be applied as an odor remover, wood preservative, and animal feed additive.

"After these results, wood vinegar and tar obtained from residual hazelnut shells could be considered as potential source of renewable energy dependent on their own characteristics," said author Liu Xifeng.

The researchers found the wood vinegar and tar left over after burning the shells contained the most phenolic substances, which laid a foundation for the subsequent research on antioxidant properties.

The experiments were conducted in a tube furnace pyrolysis reactor, and hazelnut shells samples weighing 20 grams were placed in the waiting area of a quartz tube in advance. When the target temperature was reached and stable, the raw materials were pushed to the reaction region and heated for 20 minutes.

The biochar was determined as the ratio of pyrolytic char and biomass weight, and the bio-oil yield was calculated by the increased weight of the condenser.

To separate two fractions of bio-oil sufficiently, the liquid product was centrifuged at 3,200 revolutions per minute for eight minutes, and the aqueous fraction was called wood vinegar. The separated tar fraction remained stationary for 24 hours without the appearance of the aqueous phase.

The wood vinegar and tar were respectively stored in a sealed tube and preserved in a refrigerator at 4 C for experimental analysis, and the gas yield was calculated by considering their combined volume.

The researchers found the pyrolysis temperature had a significant effect on the yield and properties of wood vinegar and tar fraction in bio-oil obtained from hazelnut shells. Wood vinegar was the dominant liquid fraction with maximal yield of 31.23 weight percent obtained at 700 C, attributable to the high concentration of water.

This research sets the groundwork for further applications of bio-oil from waste hazelnut shell pyrolysis, and its application in antioxidant activity has been extended.

"Influence of pyrolysis temperature on bio-oil produced from hazelnut shells: Physico-chemical properties and antioxidant activity of wood vinegar and tar fraction"


Related Links
American Institute Of Physics
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
NASA awards $750,000 in competition to convert carbon dioxide into sugar
Moffett Field CA (SPX) Aug 25, 2021
On Earth, plants and ocean microbes use sunlight to turn carbon dioxide, or CO2, into sugars for energy. Humans don't have that ability, at least not yet. On Mars, there aren't plants and oceans, but there is an abundance of CO2. NASA's CO2 Conversion Challenge invited the public to come up with ways to convert this principle component of the Martian atmosphere into sugar, which astronauts could use to make useful products - anything from plastics, adhesives, and fuels to food and medicine. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
New grant for photovoltaics research center will support net zero push

University of Surrey awarded new funding for perovskite solar cell research

Perovskite solar cells: Interfacial loss mechanisms revealed

The dream artificial photosynthesis technology ventures from the laboratory

BIO FUEL
Iran Foreign Minister heads to Iraq regional summit

Cyprus monitoring Syria oil spill in Mediterranean

A new catalyst to generate hydrogen from ammonia at low temperatures

Leaded petrol runs out of gas, century after first warnings: UN

BIO FUEL
US climate envoy Kerry to visit China, Japan ahead of summit

Extinction Rebellion protests in London's financial centre

Drought makes its home on the range

UN hot on the trail of temperature records

BIO FUEL
An innovative process which prevents irreversible energy loss in batteries

Thermoelectric ink turns car exhaust pipes into power generators

Stanford researchers make rechargeable batteries that store six times more charge

Digging for newer, cleaner solutions: WVU-led team tapped to explore geothermal energy

BIO FUEL
Turning hazelnut shells into potential renewable energy source

Biofuel potential from wastewater ponds

NASA awards $750,000 in competition to convert carbon dioxide into sugar

Maersk orders eight carbon-neutral container ships

BIO FUEL
'It's not easy': Slower era dawns for Paris drivers

Amazon-backed electric vehicle maker Rivian announces IPO

Waymo to extend robotaxi service in San Francicso

The case for onboard carbon dioxide capture on long-range vehicles

BIO FUEL
Smell emitted by ladybugs may provide alternative to harmful pesticides

Antibiotic use in medicine, agriculture led to increasing resistance in animals

New imaging, machine-learning methods speed effort to reduce crops' need for water

First 3D-bioprinted structured Wagyu beef-like meat unveiled

BIO FUEL
New technology lays groundwork for large-scale, high-resolution 3D displays

Small structures on a large scale

Department of Energy invests in novel research in high-performance algorithms

Lockheed Martin develops high-performance, low cost hybrid antenna for 5G, radar and remote sensing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.