Energy News  
BIO FUEL
Unexpected discovery: Blue-green algae produce oil
by Staff Writers
Bonn, Germany (SPX) Mar 10, 2020

Prof. Dormann (left) and his doctoral student Mohammed Aizouq with two different cyanobacteria cultures.

Cyanobacteria - colloquially also called blue-green algae - can produce oil from water and carbon dioxide with the help of light. This is shown by a recent study by the University of Bonn. The result is unexpected: Until now, it was believed that this ability was reserved for plants. It is possible that blue-green algae will now also become interesting as suppliers of feed or fuel, especially since they do not require arable land. The results have now been published in the journal PNAS.

What do rapeseed, avocado and olive tree have in common? They are all used by humans as producers of oil or fat. However, the ability to produce oil from water and carbon dioxide with the help of light is something that is essentially common to all plants, from unicellular algae to the giant sequoia trees.

"We have now shown for the first time that cyanobacteria can do the same," explains biologist Prof. Dr. Peter Dormann from the Institute of Molecular Physiology and Biotechnology of Plants (IMBIO) at the University of Bonn. "This was a complete surprise, not only to us."

Until now, experts had assumed that cyanobacteria lack this property. After all, they are actually bacteria, even if their trivial name "blue-green algae" suggests otherwise. They therefore differ considerably from plants in many respects: Cyanobacteria are closer related to the intestinal bacterium E. coli than to an olive tree. "There are indeed ancient reports in the literature that cyanobacteria can contain oil," says Dormann. "But these have never been verified."

The scientist has been working at IMBIO for many years on an enzyme that catalyzes one of the steps in oil synthesis in plants. The enzyme is active in the chloroplasts, the green-colored cell components that are responsible for photosynthesis. It is thanks to these that plants can produce energy-rich chemical compounds with the help of sunlight.

Many scientists suspect that chloroplasts originally come from cyanobacteria. This is because they, unlike all other groups of bacteria, also master the photosynthesis typical of plants, with the release of oxygen.

According to this theory, more than a billion years ago, a primordial plant cell "swallowed" a cyanobacterium. The bacterium then lived on in the cell and supplied it with photosynthesis products. "If this endosymbiont hypothesis is correct, then the oil synthesis enzyme of the chloroplasts might originally come from cyanobacteria," explains Dormann.

Oil synthesis enzyme similar to that of plants
He pursued this possibility together with his doctoral student Mohammed Aizouq. The scientists searched the genomes of various cyanobacteria for a gene that is similar to the genetic make-up of the enzyme involved in plant oil synthesis.

With success: They found a gene for a so-called acyltransferase in the blue-green algae; the plant enzyme also belongs to this group. Further tests showed that cyanobacteria do actually produce oil with this enzyme, even if only in small quantities.

The result is on the one hand interesting from an evolutionary-biological point of view: It shows that a certain part of the oil synthesis machinery in the chloroplasts of the plants probably originates from cyanobacteria.

However, plants today mainly use other metabolic pathways to produce oil. Furthermore, the result may open up new possibilities for producing animal feed or biofuels. This is because, unlike oil plants such as rapeseed, cyanobacteria do not need arable land to grow - a container with culture medium and sufficient light and heat is enough for them.

This may make them suitable for deserts, for example, where they can be used to produce oils for car engines without competing with food crops. Especially since combustion would only release the carbon dioxide that the cyanobacteria had previously extracted from the air during oil production.

The microorganisms would thus make a contribution to climate protection. In any case, the cyanobacteria living in the world's oceans bind considerable quantities of the greenhouse gas. It is estimated that without their contribution, the concentration of carbon dioxide in the atmosphere would be twice as high.

"Similar experiments are already underway with green algae," explains Dormann. "However, these are more difficult to maintain; moreover, they cannot be easily biotechnologically optimized to achieve the highest possible oil production rate." This could be different with cyanobacteria. The species studied at the University of Bonn produces only very small amounts of oil.

"It is nevertheless quite possible that other species are considerably more productive," says the biologist. Furthermore, blue-green algae can be genetically modified relatively easily, similar to other bacteria. "It is therefore certainly possible that the oil yield could be significantly increased again with biotechnological means."

Research Report: "Triacylglycerol and phytyl ester synthesis in Synechocystis sp."


Related Links
University Of Bonn
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
KIST develops biofuel production process in cooperation with North American researchers
Yeongi-gun, South Korea (SPX) Mar 04, 2020
Biofuel is often touted as a clean fuel, but the fact that it is made using food sources is a major drawback. To address this issue, there has been continuous research on the development of second-generation biofuels using lignocellulosic biomass. The Korea Institute of Science and Technology (KIST, President Lee Byung-Gwon) recently announces that it has developed an effective biofuel production process through the KIST-UBC (University of British Colombia) lab program in Vancouver, Canada. The pr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Graphene, perovskites, and silicon - an ideal tandem for efficient solar cells

Photon Energy commissions 8 new PV Power Plants in Hungary

Ofgem's De-carbonization Action Plan

Glidepath Ventures sells utility-scale solar project portfolio in PJM

BIO FUEL
Notes show ExxonMobil 'attempted to influence' EU Climate Deal: NGO

Canada oil firm apologizes for sexualized 'Greta' image

Firm scraps bid to drill off pristine Australian coast

NGOs take Norway to Supreme Court over Arctic oil

BIO FUEL
Brazil, US 'rolling back' on climate: UN rights chief

Trudeau calls for national climate debate in Canada

Meet Thailand's secret weapon in climate change battle

Australian summers grow longer due to climate change: study

BIO FUEL
High energy Li-Ion battery is safer for electric vehicles

Potassium metal battery emerges as a rival to lithium-ion technology

New study explains why superconductivity takes place in graphene

Scientists created an 'impossible' superconducting compound

BIO FUEL
KIST develops biofuel production process in cooperation with North American researchers

Plastic from wood

Can palm-oil biodiesel can reduce greenhouse gas emissions

Novel photocatalytic method converts biopolyols and sugars into methanol and syngas

BIO FUEL
GM unveils long-range battery in fresh electric car push

VW ditches natural gas to focus on e-cars

Tesla resumes work on German plant after court ruling

Alphabet's Waymo raises $2.25 bn to rev up autonomous projects

BIO FUEL
Kenya bans controversial donkey slaughter trade

DR Congo latest victim of locust swarms: experts

With 30,000 surveys, researchers build the go-to dataset for smallholder farms

Pakistan struggles to combat devastating locust plague

BIO FUEL
Magnetic whirls in future data storage devices

Lego's colourful plastic bricks to go green

Cloud data speeds set to soar with aid of laser mini-magnets

Satellite design applied to superyacht









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.